top of page

Dr. John M. Hanchar

Director | Center for Earth Resources Research, Memorial University of Newfoundland.
Professor at Memorial University of Newfoundland.

John M. Hanchar is Professor and Head of the Department of Earth Sciences, and Director of the Centre for Earth Resources Research, at Memorial University of Newfoundland , in St. John’s, Newfoundland, Canada.

 

His current research projects in geochemistry and materials science:

1) Use of trace element geochemistry of accessory minerals (e.g., zircon, monazite, titanite, and apatite), rock forming minerals, and melt and fluid inclusions in zircon, quartz, feldspar and apatite, using EPMA, SIMS, and LA-ICPMS to understand crustal processes. Then combining the trace element geochemistry with whole rock Hf, Nd, Sr, and Pb, isotopes, and in situ Hf isotopes in zircon, Nd isotopes in monazite, apatite, and titanite, and Pb isotopes in melt inclusions using MC-ICPMS and LA-MC-ICPMS, respectively, as tracers of crustal and mantle processes. These tools are currently being applied to the following research projects:

  • The origin, tectonic controls, and fluid-rock history of hydrothermal low-Ti iron oxide-apatite-(IOA) and iron oxide copper gold (IOCG) mineral deposits, and the related metasomatic alteration of their host rocks from the Adirondack Mountains, New York State, and Norrbotten region (e.g., Kiirunavaara and Malmberget) region of northern Sweden;

  • Geochronology, geochemical evolution, and utility as stratigraphic correlation tools, of volcanic ash beds from the middle Triassic Dolomites region of northern Italy (ancient example), and the Bandelier Tuff in New Mexico, and the Bishop Tuff in California (modern examples).

  • The crust and mantle evolution of the Adamello intrusive complex, northern Italy. This project involves whole rock major and trace elements and Hf isotopes and in situ U/Pb and Hf in zircon.

  • The geochemistry of the Popes Hill rare earth element deposit in Labrador. This study involves characterizing the minerals present and the distribution of rare earth elements, and other chemical elements of interest, and the geochemical evolution of the deposit.

2) Synthesis and characterization (using EPMA, PIXE, SIMS, LA-ICPMS, LA-MC-ICPMS, and powder XRD) of high-purity undoped and doped silicate, phosphate, and oxide minerals, and glasses, for structural properties, trace element incorporation, isotope standards, thermodynamic studies, diffusion measurements, spectroscopic studies and storage materials for radioactive waste from dismantled nuclear weapons and spent nuclear fuel;

3) Experimental and natural sample studies of trace element partitioning between accessory minerals and melts and fluids and other minerals. This research project is primarily focused on the distribution of rare earth elements between fluids/melts and garnet, clinopyroxene, zircon, monazite, and apatite igneous rocks and high grade metamorphic rocks;

4) Effects and recovery of, and 238Pu, 241Am, and 237Np, and naturally occurring (e.g., 235U, 238U and 232Th), alpha-induced self-radiation damage of crystalline and non-crystalline solids with an emphasis on the mineral zircon;

5) Applications of cathodoluminescence and Raman spectroscopy and imaging, and back-scattered electron imaging, to problems in mineralogy, petrology, geochemistry, and materials science.

bottom of page