Application of **ε**UCG™ Technology in International Commercial Projects

Ergo Exergy Technologies Inc. Montréal, Québec, CANADA

High Commission for Pakistan, Montreal, August 03, 2016

The Exergy UCG[™] (εUCG) –

the Source of Hydrocarbons from Unminable Coal:

- Indigenous and safe
- Environmentally Clean and Carbon Efficient
- Cost Competitive
- for IGCC Power Generation
- for Synthesis of Clean Fuels & Chemicals

EUCG Technology

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Runners-Up

The Winner

Wright Brothers

EUCG: Coal Mining Technology

VS.

- *ɛ*UCG is not a 2-well process, but large-scale mining method
- Rock deformation and ground water influx management
- Injects oxygen, air, H2O, CO2 etc.
- Drilling of directional, inclined, vertical and other wells
- Modern technology based on 70+ years of Soviet work
- Average panel capacity 5PJ/a (0.3 Mt/a), 2-5 years life
- Mine-average coal extraction rates of 95%
- Mine-average cold gas efficiency of 75-85%
- Issues: large-scale consumption of GW, subsidence

EUCG Syngas

EUCG vs. Conventional Coal

EUCG Technology All Kinds of Coal

UCG Plant	Rank	Thickness, m	Depth, m	Dip°	LHV,MJ/kg
Lisichansk	Bituminous	0.44 - 2.0	60 - 250	38 - 60	20.1 - 23.0
Yuzhno-Abinsk	Bituminous	2.2 - 9.0	130 - 380	35 - 58	28.9 - 30.7
Podmoskovnaya	Lignite	2.5	30 - 80	<1	11.8
Angren	Lignite	3.0 - 24.0	110 - 250	7	15.3
Shatskaya	Lignite	2.6	30 - 60	<1	11.0
Sinelnikovo	Lignite	3.5 - 6.0	80	<1	8.0
Chinchilla	Sub-bituminous	10.0	135	<1	21.7
Majuba	Bituminous	3.5-4.5	285	3	20.3
Kingaroy	Sub-bituminous	17.0	200	5	23.5
Huntly West	Bituminous	4.0-22.0	220-540	0-75	24.5
CC Alberta	Sub-bituminous	7.0	150-260	6	20.5-23.0
Alaska SHR	Lignite/ Sub-bituminous	1.0-12.0	50-650	0-75	11.0-16.5

Chinchilla I and II

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Chinchilla I and Chinchilla II:

Two completely different operators Two completely different results.

Chinchilla I (Ergo 1997-2006)

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Status Nov. 2006 : fully quenched, shut down.

- 1 panel 9 process wells; capacity 80,000 Nm³/h, 30 months
- 35,000 t of coal extracted, over 80 million Nm³ of gas, stable gas quality LHV=5.0 MJ/Nm³, p = 1100 kPa, t = 120° C
- Demonstrated 95% recovery of the target coal resource and 75% total energy recover.
- Gasifier pressure was always lower than hydrostatic.
- Three-phase gradual shutdown procedure ended in 2003.
- Venting cavity at the time of shutdown operation.
- Cavity cooling by natural water influx.

- Environmental monitoring during operation, shutdown and post shutdown complied with rigorous EPA requirements; quarterly environmental performance reports prepared by Golder Associates have been submitted to Queensland EPA.
 - Annual environmental audits by independent company Sinclair Knight Merz – during all seven audits no environmental issues reported.

No environmental issues from 1997 to Nov. 2006

Chinchilla I (Ergo 1997-2006)

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Groundwater Protection

Benzene
Total Phenol
Total PAH

Chinchilla II (Linc 2007-2015)

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

No Involvement of Ergo Exergy Technologies Inc.

In operation : 2007 – 2013, four consecutive trials, total extraction under 10,000t; shutdown underway

Major environmental investigation by Department of Environmental and Heritage Protection (QEHP) :

- More than 230 bores were drilled; water and soil samples were collected from 13 farms.
- Lab tests confirmed presence of carbon monoxide, hydrogen, hydrogen sulphide, BTEX and other chemicals.
- Allegedly found "scientific evidence of operation above hydrostatic pressure, fracturing the landform, and excursion of contaminants."
- <u>QEHP</u> alleges that plant owner failed to report numerous plant incidents:
 - Fire that caused site evacuation in 2007
 - Persistent leaks of toxic gas into air and groundwater from 2007 till 2011
 - Worker's claims about their ill health as result of "uncontrolled releases" of gas at site in 2007-2013.

QEHP Charges:

- Irreversible damage "to more than one environmental receptor [the atmosphere, vegetation, water and soil]."
- A **320** km² exclusion zone around 1 km² plant.
- EHP has laid 5 criminal charges against the plant owner

$\begin{array}{c} \text{Majuba } \boldsymbol{\varepsilon} \text{UCG Project} \\ PC \ Co-Firing \rightarrow IGCC \end{array}$

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Majuba Power Plant: 4,200 MW_e

Majuba **EUCG** Project First EUCG Gas in Africa

Majuba *E***UCG** Project *PC Co-Firing* \rightarrow *IGCC*

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

TECHNOLOGY INCORPORATED

Majuba $\mathcal{E}UCG$ Project PC Co-Firing \rightarrow IGCC

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

New Gas Treatment Plant

Courtesy Eskom Holdings Ltd

Majuba ε UCG Project: - PC Co-Firing \rightarrow IGCC

- Multiple unresolved small faults and dykes
- Very low permeability, low moisture coal
- Record RCL rates
- 7 years of continuous *E*UCG operation
- Successful environmental management
- Co-firing syngas in commercial boilers
- Controlled Shutdown of panel 1 underway
- FEED for 140MWe Gas Turbine Plant
- Commissioning of 6MWe **E**UCG co-firing plant
- Developing 70,000 m3/h commercial-scale panel
- Pathway to 2,100MWe EUCG-IGCC plant

Kingaroy **& UCG** Project (Cougar)

- Commissioned March 15, 2010
- Shut down due to laboratory error
- 17,000 analyses of GW have been undertaken on and around the site and no contamination of ground water has been detected
- Plant moth-balled

- 210m depth, 19m thick sub-bituminous coal seam
- Partial (top 50%) coal seam extraction
- Soft unconsolidated overburden with strong basalt layers multiple casing completion
- High permeability coal seam: vertical wells with RCL (15.7m/day)
- Short operation RCL only

Huntly West **EUCG** Project (SENZ)

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

- Depth 240 540 m, very complex geology
- Two target coal seams gasified together
- Coal thickness >17m
- Partial (top 30%) coal seam extraction
- Over 35 bar hydrostatic pressure
- Very weak coal, overburden multiple casings
- Sponcom Management
- Vertical wells, Aquasplitt[™] & RCL
- Pilot Plant Started April 12, 2012
- 5 months operation, over 5,000t
- Controlled shut-down completed
- No environmental issues

Image: Solid Energy New Zealand Ltd

Alberta **EUCG** Project (Laurus Energy)

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

- Consistent 7m coal seam
- Depth 180 -350m
- High quality subbituminous coal
- No known faults or geological complications
- Low permeability coal
- Poor coal aquifer
- Protection of sub-surface aquifers

Status

- P-F & Site characterization completed
- Demonstration Plant permits obtained
- Commenced EIA
- Built demonstration plant
- GW monitoring
- Calibration burn pending

SHR **EUCG** Project (Laurus Energy)

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

- Depth 200-1650m
- Weak, partly unconsolidated surrounding rock
- Sequence of 14 coal seams, 2 7m thick
- Remote location, limited site access
- Rank varies from lignite to subbituminous within project area
- Multiple major faults
- Multiple sand bands in the formation
- Completed Exploration & Site Selection
- Site Characterization starting

Images: StoneHorneRidge Project

India *E***UCG** Projects

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

85.30

scale. 1: 50,000

73 E

85:35

TECHNOLOGY INCORPORATED

NFS *E***UCG** Project (Sasol)

- 1.5 to 8m coal seams
- Depth 140 470m
- Strong stable overburden rock
- Piezopermeability effects
- Oxygen injection
- F-T syngas
- Site Selection and Pre-Feasibility completed

Products from εUCG[™]

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Economics of

products from *E*UCGTM

(India 2014)

Synthesis Products (India 2014)

EUCG vs. CG – Electricity (India 2014)

EUCG vs. CG – SNG (India 2014)

EUCG vs. CG – Methanol (India 2014)

εUCG vs. CG – Gasoline (India 2014)

EUCG vs. CG – Diesel (India 2014)

©Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

F

EUCG vs. CG – Urea (India 2014)

EUCG Thar Lignite Report 2003

©Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Conclusions

- Conducted in 2002 2003 for the Block III
- It is concluded that...the Block III of the Thar coalfield is likely to support a UCG operation with an output to sustain a power station in the range 120 MW to 1,200 MW.

Reserve Category	GSP estimate, Mt	UCG reserves, Mt	
Measured reserves	412.75	274.17	
Indicated reserves	1337.01	888.12	
Inferred reserves	258.28	171.58	
Total reserves	2008.04	1333.87	

One Block of Thar Lignite would support generation of **8,000MW**_e for 30 years

Power Generation Project Based on Underground Coal Gasification of Block III of Thar Coalfield, Pakistan

Phase 0.1: Screening Study

Final Report (Excerpt)

February 2003

Côte Saint Luc 'Quebec 'Canada

The Exergy UCG Technology Score Card...

© Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

Clean Energy from Unminable Coal
 Energy- and Carbon-Efficient
 Cost Competitive

Geopolitical and market security

©Copyright Ergo Exergy Technologies Inc. 2014. All rights reserved.

© Ergo Exergy Technologies Inc.

